SSLC Class Similar Triangles

SSLC

SIMILAR TRIANGLES

ENLISH VERSION

Chapter 11

Similar Triangles

> Two triangles are said to be similar, if

- Their corresponding angles are equal.

- Their corresponding sides are proportional

Thales Theorem:[Basic proportionality theorem]
"If a straight line is drawn parallel to a side of a triangle, then it divides the other two sides proportionally"

Data : \quad In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$

To prove: $\quad \frac{A D}{D B}=\frac{A E}{E C}$
Construction : 1. Join D, E and E,B .
2. draw $\mathrm{EL} \perp \mathrm{AB}$ and $\mathrm{DN} \perp \mathrm{AC}$

Proof : $\left.\frac{\Delta \mathrm{ABC}}{\triangle \mathrm{BDE}}=\frac{\frac{1}{2}}{\frac{1}{2}} \frac{\mathrm{xADxEL}}{\mathrm{xDBxEL}} \right\rvert\, \because \mathrm{A}=\frac{1}{2} \mathrm{xbxh}$

$\frac{\triangle \mathrm{ABC}}{\triangle \mathrm{BDE}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
$\frac{\triangle \mathrm{ADE}}{\triangle \mathrm{CDE}}=\frac{\frac{1}{2}}{\frac{1}{2}} \frac{\mathrm{xAExDN}}{\mathrm{xDBxDN}} \quad \because \mathrm{A}=\frac{1}{2} \mathrm{xbxh}$
$\frac{\triangle \mathrm{ADE}}{\triangle \mathrm{CDE}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\because \triangle \mathrm{BDE} \equiv \triangle \mathrm{CDE}$

> Corollary;

1.In $\triangle \mathrm{ABC}$ DEIIBC,

$\frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}}$

2. In $\triangle A B C$ DElIBC,
$\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$

3. In $\triangle \mathrm{ABC}$ DEIIBC,

$$
\frac{A B}{A D}=\frac{A C}{A E}=\frac{B C}{D E}
$$

Theorem (AA similarity Criterion)

"If two triangles are equiangular, then their corresponding sides are proportional".

Data :

In $\triangle \mathrm{ABC}$ దుత్తు $\triangle \mathrm{DEF}$
(i). $\angle \mathrm{BAC}=\angle \mathrm{EDF}$
(ii). $\angle \mathrm{ABC}=\angle \mathrm{DEF}$

To prove : $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$

Construction :

Mark points ' G ' and ' H ' on AB and AC such that
i) $\quad \mathrm{AG}=\mathrm{DE}$ and
ii) ii) $\mathrm{AH}=\mathrm{DF}$ join G and H .

Proof:

In $\triangle \mathrm{AGH}$ and $\triangle \mathrm{DEF}$
$\mathrm{AG}=\mathrm{DE}$
$\angle B A C=\angle E D F$
$\mathrm{AH}=\mathrm{DF}$

$$
\therefore \Delta \mathrm{AGH} \equiv \triangle \mathrm{DEF}
$$

$\therefore \angle \mathrm{AGH}=\angle \mathrm{DEF}$
ఆద゙రా $\angle \mathrm{ABC}=\angle \mathrm{DEF}$
$\Rightarrow \angle \mathrm{AGH}=\angle \mathrm{ABC}$
$\therefore \mathrm{GH} \| \mathrm{BC}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{AB}}{\mathrm{AG}}=\frac{\mathrm{BC}}{\mathrm{GH}}=\frac{\mathrm{CA}}{\mathrm{HA}} \\
& \therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}
\end{aligned}
$$

\because construction
\because data
\because construction
\because SAS
\because CPCT
\because Data
\because Axiom 1
\because third corollary to Thales theorem
$\because \triangle \mathrm{AGH} \equiv \triangle \mathrm{DEF}$

THEOREM.

"In a right angled triangle, the perpendicular to the hypotenuse from the right angled vertex, divides the original triangle into two right angled triangles, each of which is similar to the original triangle."

Data: In

$\triangle \mathrm{ABC}$, (i) $\angle \mathrm{ABC}=90^{\circ}$ (ii) $\mathrm{BD} \perp \mathrm{AC}$

To prove:

(i) $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$

(ii). $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
(iii). $\triangle \mathrm{ADB} \sim \triangle \mathrm{BDC}$

Proof : compare $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ABC}$,
(i). $\angle \mathrm{ADB}=\angle \mathrm{ABC}=90^{\circ}$
(ii). $\angle \mathrm{BAD}=\angle \mathrm{CAD}$
(iii). $\angle \mathrm{ABD}=\angle \mathrm{ACB}$
$\therefore \triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
In $\triangle B D C$ and $\triangle A B C$,
(i). $\angle \mathrm{BDC}=\angle \mathrm{ABC}=90^{\circ}$
(ii). $\angle \mathrm{BCD}=\angle \mathrm{ACB}$
(iii). $\angle \mathrm{DBC}=\angle \mathrm{BAC}$
$\therefore \quad \triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
From (1) దుత్తు (2)
$\triangle \mathrm{ADB} \sim \Delta \mathrm{BDC}$

Corollary-1

$$
\begin{aligned}
& \triangle A D B \sim \\
& A B^{2}=A C \cdot A D
\end{aligned}
$$

Corollary - 2

$$
\begin{aligned}
& B D C \sim A B C \\
& B C^{2}=A C \cdot D C
\end{aligned}
$$

Corollary - 3

$$
\begin{aligned}
& \mathrm{ADB} \sim \mathrm{BDC} \\
& \mathrm{BD}^{2}=\mathrm{AD} \cdot \mathrm{DC}
\end{aligned}
$$

Theorem

"The areas of similar triangles are proportional to squares on the corresponding sides".

Data :

$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$,
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{DF}}$

To prove :
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$

Construction :

Draw AL $\perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{EF}$

Proof : compare $\triangle \mathrm{ALB}$ and $\triangle \mathrm{DME}$
$\angle \mathrm{ABL}=\angle \mathrm{DEM}$ [\because data]
$\angle \mathrm{ALB}=\angle \mathrm{DME}=90^{\circ} \quad[\because$ construction $]$
Δ ALB $\sim \Delta$ DME [\because Equiangular]
$\Rightarrow \frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{AB}}{\mathrm{DE}}$ ఆదేరర $\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AB}}{\mathrm{DE}} \quad[\because$ data $]$
$\therefore \frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{BC}}{\mathrm{EF}}$

$$
\begin{aligned}
\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}} & =\frac{\frac{1}{2}}{\frac{1}{2}} \frac{\mathrm{xBCxAL}}{\mathrm{xEFxDM}} \\
& =\frac{\mathrm{BCxAL}}{\mathrm{EFxDM}}[\because(1)] \\
& =\frac{\mathrm{BCxBC}}{\mathrm{EFxEF}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \\
\text { From data }, \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{DF}} \\
\therefore \frac{\text { Area of } \triangle \mathrm{ABc}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}} & =\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{CA}^{2}}{\mathrm{DF}^{2}}
\end{aligned}
$$

Exercise : 11.1

1) In the given pairs of similar triangles, write the corresponding vertices, corresponding sides and their ratios.

	Correspondi ng vertices	Correspondi ng sides	Ratios
		$\mathrm{AB} \rightarrow \mathrm{DE}$	$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{FD}}$
	$\mathbf{A} \rightarrow$ D		
	$\mathbf{B} \rightarrow \mathbf{E}$	$\mathrm{BC} \rightarrow \mathrm{EF}$	
		$\mathrm{AC} \rightarrow \mathrm{FD}$	
(b)	$\mathbf{C} \rightarrow \mathbf{F}$		
	$\mathbf{A} \rightarrow \mathbf{Q}$	$\mathrm{AB} \rightarrow \mathrm{PQ}$	$\frac{A B}{P Q}=\frac{B C}{P C}=\frac{A C}{C Q}$
	$\mathbf{B} \rightarrow \mathbf{P}$	$\mathrm{BC} \rightarrow \mathrm{PC}$	
	$\mathrm{C} \rightarrow \mathrm{C}$	$\mathrm{AC} \rightarrow \mathrm{CQ}$	

SSLC Class Similar Triangles

2) Study the following figures and find out in each case whether the triangles are similar. Give reason.

Solution: In \triangle DGH

$$
\begin{aligned}
\angle \mathrm{G} & =180^{\circ}-\left(60^{\circ}+80^{\circ}\right) \\
& =180^{\circ}-140^{\circ}=40^{\circ}
\end{aligned}
$$

In \triangle DFE
$\angle \mathrm{E}=180^{\circ}-\left(40^{\circ}+80^{\circ}\right)$

$$
=180^{\circ}-120^{\circ}=60^{\circ}
$$

$\angle \mathrm{G}=\angle \mathrm{F}, \angle \mathrm{D}=\angle \mathrm{D}, \angle \mathrm{H}=\angle \mathrm{E}$
$\therefore \triangle \mathrm{DGH} \sim \triangle \mathrm{DFE}$

Solution : In $\triangle \mathrm{ABC}$
$\angle \mathrm{B}=\angle \mathrm{C}=\mathrm{a}$
$75^{\circ}+\mathrm{a}+\mathrm{a}=180^{\circ}$
$75^{\circ}+2 \mathrm{a}=180^{\circ}$
$2 \mathrm{a}=180^{\circ}-75^{\circ}$
$2 \mathrm{a}=105^{\circ}$
$\mathrm{a}=\frac{105^{\circ}}{2}=52.5^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{C}=52.5^{\circ} \therefore \angle \mathrm{E}=52.5^{\circ}$
$\triangle \mathrm{DFEW} \mathrm{m}_{\mathrm{m}} \angle \mathrm{D}=180^{\circ}-\left(55^{\circ}+52.5^{\circ}\right)$
$\angle \mathrm{D}=180^{\circ}-107.5^{\circ}=72.5^{\circ}$

Corresponding angles of triangles are not equal.

$$
\therefore \triangle \mathrm{ABC} \sim \Delta \mathrm{DFE}
$$

$$
\begin{aligned}
& \text { Solution : In } \triangle \mathrm{MON} \text { and } \triangle \mathrm{POQ} \\
& \frac{\mathrm{MO}}{\mathrm{PO}}=\frac{8}{6}=\frac{4}{3} \\
& \frac{\mathrm{MN}}{\mathrm{PQ}}=\frac{6}{4}=\frac{3}{2} \\
& \frac{\mathrm{NO}}{\mathrm{OQ}}=\frac{10}{8}=\frac{5}{4} \\
& \frac{\mathrm{MO}}{\mathrm{PO}} \neq \frac{\mathrm{MN}}{\mathrm{PQ}} \neq \frac{\mathrm{NO}}{\mathrm{OQ}} \\
& \therefore \triangle \mathrm{MON} \text { and } \triangle \mathrm{POQ} \text { are not similar } \\
& \text { triangles. } \\
& \hline
\end{aligned}
$$

soln : : In $\triangle X U V$ and $\triangle X Y Z$,
$\angle X U V=\angle X Y Z=60^{\circ}$
$\angle X$ common angle
$\angle \mathrm{XVU}=\angle \mathrm{XZY}$ [corresponding angles]
Corresponding angles of triangles are equal
$\therefore \triangle \mathrm{XUV} \sim \Delta \mathrm{XYZ}$
3. From the following data, state whether $\triangle A B C$ is similar to $\triangle \mathrm{DEF}$ or not
a) $\angle \mathrm{A}=70^{\circ}, \angle \mathrm{B}=80^{\circ}, \angle \mathrm{D}=70^{\circ}, \angle \mathrm{F}=30^{\circ}$

Soln:
$\angle \mathrm{C}=180^{\circ}-\left(70^{\circ}+80^{\circ}\right)=180^{\circ}-150^{\circ}=30^{\circ}$
$\angle E=180^{\circ}-\left(70^{\circ}+30^{\circ}\right)=180^{\circ}-100^{\circ}=$
80° corresponding angles of triangles are equal
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
b) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}, \mathrm{CA}=15 \mathrm{~cm}, \mathrm{DE}=4 \mathrm{~cm}, \mathrm{EF}=3 \mathrm{~cm}, \mathrm{FD}=5 \mathrm{~cm}$
soln :
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{8}{4}=2$

$$
\begin{aligned}
& \frac{\mathrm{BC}}{\mathrm{EF}}=\frac{9}{3}=3 \\
& \frac{\mathrm{CA}}{\mathrm{FD}}=\frac{15}{5}=3 \\
& \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}=3
\end{aligned}
$$

Corresponding sides of triangles are not proportional $\therefore \triangle \mathrm{ABC}$ దుత్తు $\triangle \mathrm{DEF}$ are not similar
4. Select the set of numbers in the following, which can form similar triangles.
(i) $3,4,6$
(ii) $9,12,18$
(iii) $8,6,12$
$\begin{array}{ll}\text { (iv) } 8,4,9 & \text { (v) } 2,4 \frac{1}{2}, 4\end{array}$
a) (i) దుత్తు (ii) $\rightarrow \frac{3}{9}=\frac{4}{12}=\frac{6}{18}=\frac{1}{3}$
b) (i) దుత్తు (iii) $\rightarrow \frac{3}{6}=\frac{4}{8}=\frac{6}{12}=\frac{1}{2}$
c) (ii) దుత్తు (iii) $\rightarrow \frac{9}{6}=\frac{12}{8}=\frac{18}{12}=\frac{3}{2}$

Can form similar triangles.

Exercise 10.2

1. Study the adjoining figure. Write the ratios in relation to basic proportionality theorem and its cocollories, in terms of a, b, c, and d

Soln ; $\quad \frac{a+b}{a}=\frac{c+d}{c}$

2. In the adjoining figure, $\mathrm{DE} \| \mathrm{AB}, \mathrm{AD}=7 \mathrm{~cm}, \mathrm{CD}=5 \mathrm{~cm}$ and $\mathrm{BC}=$ 18 cm .

Find BE and CE .
Soln : In the figure $\mathrm{DE} \| \mathrm{AB}$,
According to B.P,T,

$$
\begin{aligned}
\frac{A C}{C D} & =\frac{B C}{C E} \\
\frac{12}{5} & =\frac{18}{C E} \\
C E & =\frac{18 \times 5}{12}
\end{aligned}
$$

$C E=7.5 \mathrm{~cm}$
$\therefore \mathrm{BE}=\mathrm{BC}-\mathrm{CE}$
$\therefore \mathrm{BE}=18-7.5$
$\therefore \mathrm{BE}=10.5 \mathrm{~cm}$
3.In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on the sides AB and AC respectively such that $\mathrm{DE} \| \mathrm{BC}$.
i) If. $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$ find AC ..

Soln: In the fig DE\|BC so
according to B.P.T,

$$
\begin{aligned}
\frac{\mathrm{AB}}{\mathrm{AD}} & =\frac{\mathrm{AC}}{\mathrm{AE}} \\
\mathrm{AC} & =\frac{\mathrm{ABxAE}}{\mathrm{AD}} \\
\mathrm{AC} & =\frac{15 \times 8}{6} \\
\mathrm{AC} & =20 \mathrm{~cm}
\end{aligned}
$$

(ii) $\mathrm{AD}=8 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{AE}=12 \mathrm{~cm}$ Find CE ..
soln :In the fig DE॥BC so
according to B.P.T,
$\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
$\mathrm{AC}=\frac{\mathrm{ABxAE}}{\mathrm{AD}}$

$\mathrm{AC}=\frac{12 \times 12}{8}$
$\mathrm{AC}=18 \mathrm{~cm}$
$\therefore \mathrm{CE}=\mathrm{AC}-\mathrm{AE}=18-12=6 \mathrm{~cm}$
(iii) $\mathrm{AD}=4 \mathrm{x}-3, \mathrm{BD}=3 \mathrm{x}-1, \mathrm{AE}=8 \mathrm{x}-7$ and $\mathrm{CE}=5 \mathrm{x}-3$ find the value of x.
soln: In the fig $\mathrm{DE} \| \mathrm{BC}$ so according to B.P.T,
$\frac{A D}{B D}=\frac{A E}{C E}$

$$
\begin{aligned}
& \frac{4 x-3}{3 x-1}=\frac{8 x-7}{5 x-3} \\
& (4 x-3)(5 x-3)=(8 x-7)(3 x-1) \\
& 20 \mathrm{x}^{2}-15 \mathrm{x}-12 \mathrm{x}+9=24 \mathrm{x}^{2}-21 \mathrm{x}-8 \mathrm{x}+7 \\
& -4 \mathrm{x}^{2}+2 \mathrm{x}+2=0 \\
& 4 \mathrm{x}^{2}-2 \mathrm{x}-2=0 \\
& 4 \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-2=0 \\
& 4 \mathrm{x}(\mathrm{x}-1)+2(\mathrm{x}-1)=0 \\
& (\mathrm{x}-1)(4 \mathrm{x}+2)=0 \\
& (\mathrm{x}-1)=0 \text { or }(4 \mathrm{x}+2)=0 \\
& \mathrm{X}=1 \text { or } 4 \mathrm{x}=-2 \text { (length of line cannot be positive) } \\
& \therefore \mathrm{X}=1
\end{aligned}
$$

3) In $\triangle P Q R, E$ and F are points on the sides $P Q$ and $P R$, respectively. For each of the following cases, verify EF॥QR.
(i). $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}$,
$\mathrm{PF}=3.6 \mathrm{~cm}, \mathrm{FR}=2.4 \mathrm{~cm}$
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=1.3$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{3.6}{2.4}=1.5$
$\therefore \frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}}$

$\therefore \mathrm{EF} \neq \mathrm{QR}$.
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}, \mathrm{FR}=9 \mathrm{~cm}$
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{4}{4.5}=0.889$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{8}{9}=0.889$
$\therefore \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}$
$\therefore \mathrm{EF} \| \mathrm{QR}$

(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}$,
$\mathrm{PE}=0.18 \mathrm{~cm}, \mathrm{PF}=0.36 \mathrm{~cm}$
$\frac{\mathrm{PQ}}{\mathrm{PE}}=\frac{1.28}{0.18}=7.11$
$\frac{\mathrm{PR}}{\mathrm{PF}}=\frac{2.56}{0.36}=7.11$
$\therefore \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}$
$\therefore \mathrm{EF} ॥ \mathrm{QR}$

5. In the adjoining figure, $\mathrm{ACl} \mathrm{\| BD}$ and $\mathrm{CE} \| \mathrm{DF}$.If $\mathrm{OA}=12 \mathrm{~cm}, \mathrm{AB}=$ $9 \mathrm{~cm}, \mathrm{OC}=8 \mathrm{~cm}$ and $\mathrm{EF}=4.5 \mathrm{~cm}$, find OE .
soln ; In \triangle OBD, ACllBD
$\therefore \frac{\mathrm{OA}}{\mathrm{AB}}=\frac{\mathrm{OC}}{\mathrm{CD}}$
$\Rightarrow \frac{12}{9}=\frac{8}{\mathrm{CD}}$
$\Rightarrow \mathrm{CD}=\frac{8 \mathrm{x} 9}{12}=6 \mathrm{~cm}$
\triangle ODF నెల్లి CEllDF

$\therefore \frac{\mathrm{OC}}{\mathrm{CD}}=\frac{\mathrm{OE}}{\mathrm{EF}}$
$\Rightarrow \mathrm{OE}=\frac{8 \times 4.5}{6}=6 \mathrm{~cm}$
6. In the figure $\mathrm{PC} \| \mathrm{QK}$ and $\mathrm{BCl} \| \mathrm{HK}$. If $\mathrm{AQ}=6 \mathrm{~cm}, \mathrm{QH}=4 \mathrm{~cm}$, $\mathrm{HP}=$ 5 cm and $K C=18 \mathrm{~cm}$, find $A K$ and $P B$.
Soln: In $\triangle \mathrm{APC}, \mathrm{QK} \| \mathrm{PC}$

$$
\begin{aligned}
& \frac{A Q}{Q P}=\frac{A K}{K C} \\
& \Rightarrow \frac{6}{9}=\frac{A K}{18} \\
& \Rightarrow A K=\frac{18 \times 6}{9}=12 \mathrm{~cm}
\end{aligned}
$$

In ABC , $\mathrm{HK} \| \mathrm{BC}$
$\therefore \frac{\mathrm{AH}}{\mathrm{HB}}=\frac{\mathrm{AK}}{\mathrm{KC}}$

$\Rightarrow \frac{10}{\mathrm{HB}}=\frac{12}{18}$
$\Rightarrow \mathrm{HB}=\frac{18 \mathrm{x} 10}{12}=15 \mathrm{~cm}$
$\therefore \mathrm{PB}=\mathrm{HB}-\mathrm{HP}$
$\Rightarrow \mathrm{PB}=15-5=10 \mathrm{~cm}$
7) At a certain time of the day a tree casts its shadow 12.5 feet long. If the height of the tree is 5 feet, find the height of another tree that casts its shadow 20 feet long at the same time.

In the fig $A B \| D E$,
$\therefore \frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{EF}}{\mathrm{BC}} \Rightarrow \frac{\mathrm{DE}}{5}=\frac{20}{12.5} \Rightarrow \mathrm{DE}=\frac{20 \times 5}{12.5}=8$ feet
8) A lader resting against a vertical wall has its foot on the ground at a distance of 6 cm from the wall. Aman on the ground climbes two thirds of the ladder. What will be his distance from the wall now?
Soln: In fig DE\|BC,
$\therefore \frac{\mathrm{DE}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{AB}} \Rightarrow \mathrm{DE}=\frac{\mathrm{AD} \times \mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow \mathrm{DE}=\frac{\frac{1}{3} \times 6}{1}$
$\Rightarrow \mathrm{DE}=2$ feet

Riders based on Thales theorem

1. ' X ' is any point inside $\triangle A B C$. $X A, X B$ and $X C$ are joined. ' E ' is any point on $\overline{\mathrm{AX}}$. If $\mathrm{EF}\|\mathrm{AB}, \mathrm{FG}\| \mathrm{BC}$. Prove that $\mathrm{EG} \| \mathrm{AC}$
soln: In $\triangle \mathrm{AXB}, \mathrm{EF} \| \mathrm{AB}$
$\therefore \frac{\mathrm{XE}}{\mathrm{EA}}=\frac{\mathrm{XF}}{\mathrm{FB}}-\cdots-\cdots--(1)[\because$ by using BPT $]$ In $\triangle \mathrm{BXC}, \mathrm{FG} \| \mathrm{BC}$ $\therefore \frac{\mathrm{XF}}{\mathrm{FB}}=\frac{\mathrm{XG}}{\mathrm{GC}}-\cdots-\cdots---(2)[\because \because$ by using BPT From (1) and (2)

$$
\frac{\mathrm{XE}}{\mathrm{EA}}=\frac{\mathrm{XG}}{\mathrm{GC}}
$$

\therefore EGIIAC $[\because$ by using converse of BPT]
2. In $\triangle \mathrm{AXB}, \mathrm{D}$ and E are points on AB and AC such that $\mathrm{BD}=$ CE. Prove that $\mathrm{DE} \| \mathrm{BC}$.
Soln ; In $\triangle A B C, \angle B=\angle C$
$\therefore \mathrm{AB}=\mathrm{AC}$
$\mathrm{BD}=\mathrm{EC}[\because$ data $]$
$\therefore \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{EC}}$

\therefore DE\|BC [\because by using converse of BPT]
3. In $\triangle A B C, P Q \| B C$ and $B D=D C$. Prove that $P E=E Q$.

Soln ; In $\triangle \mathrm{ABD}, \mathrm{PE} \| \mathrm{BD}[\because$ data $]$
$\therefore \frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{PE}}{\mathrm{BD}} \quad-\cdots--(1)[\because \mathrm{B} . \mathrm{P} . \mathrm{T}]$
In $\triangle \mathrm{ADC}, \mathrm{EQ} \| \mathrm{DC} \quad[\because$ data $]$
$\therefore \frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{EQ}}{\mathrm{DC}}$
(2) [\because B.P.T]

From (1) And (2)

$\frac{\mathrm{PE}}{\mathrm{BD}}=\frac{\mathrm{EQ}}{\mathrm{DC}}$
$P E=E Q$

$$
[\because \mathrm{BD}=\mathrm{DC} \text { data }]
$$

4. In the figure $P R \| B C$ and $Q R \| B D$. Prove that $P Q \| C D$.

Soln : In $\triangle \mathrm{ABC}, \mathrm{PR} \| \mathrm{BC}$
$\therefore \frac{A R}{R B}=\frac{A P}{P C}$ ------ (1) [\because B.P.T]
In $\triangle \mathrm{ADB}, \mathrm{QR} \| \mathrm{BD}$
$\therefore \frac{\mathrm{AR}}{\mathrm{RB}}=\frac{\mathrm{AQ}}{\mathrm{QD}}$
(2) [\because B.P.T]

From (1) and
$\frac{\mathrm{AP}}{\mathrm{PC}}=\frac{\mathrm{AQ}}{\mathrm{QD}}$

$\therefore \mathrm{PQ} \| \mathrm{CD}$ [\because by using converse of BPT]
5. In $\triangle A B C, D E \| B C$ and $C D \| E F$. Prove that $. A^{2}=A F \times A B$.

Soln : In $\triangle A B, D E \| B C$
$\therefore \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
(1) [\because B.P.T]

In $\triangle \mathrm{ADC}, \mathrm{FEllDC}$

$$
\therefore \frac{\mathrm{AD}}{\mathrm{AF}}=\frac{\mathrm{AC}}{\mathrm{AE}} \quad--\cdots(2)[\because \text { B.P.T }]
$$

From (1) and (2)
$\frac{A B}{A D}=\frac{A D}{A F}$
$\therefore \mathrm{ADxAD}=\mathrm{AB} \times \mathrm{AF}$
$\mathrm{AD}^{2}=\mathrm{AF} \times \mathrm{AB}$

Exercise 11.3

A. Numerical problems based on AA similarity criterion.

1. In the given figure, $\mathrm{AE} \| \mathrm{DB}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{BD}=5 \mathrm{~cm}, \mathrm{DC}=4 \mathrm{~cm}$, if $C E=12 \mathrm{~cm}$, find $A E$ and $A C$.
Soln :
In $\triangle \mathrm{ACE}$ and $\triangle \mathrm{BDC}$,
$\triangle A A A C E=\triangle B C D$ [\because vertically opp angles]
$\angle \mathrm{EAC}=\angle \mathrm{DBC} \quad[\because$ alternate angles $]$
$\therefore \triangle \mathrm{ACE} \sim \triangle \mathrm{BDC} \quad[\because$ by AAA Criterion]
$\therefore \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{CE}}{\mathrm{CD}}$
$\Rightarrow \mathrm{AC}=\frac{12 \times 7}{4}=21 \mathrm{~cm}$

$\Rightarrow \mathrm{AE}=\frac{12 \times 5}{4}=15 \mathrm{~cm}$
2. In $\triangle X Y Z$,Pis any point on $X Y$ and $P Q \perp X Z$.If $X P=4 \mathrm{~cm}$ $X Y=16 \mathrm{~cm}$ and $X Z=24 \mathrm{~cm}$, find $X Q$.
Soln ; In $\triangle X Y Z$ and $\triangle X Q P$,
$\angle X Y Z=\angle X Q P \quad\left[\because 90^{\circ}\right]$
$\angle \mathrm{YXZ}=\angle \mathrm{QXP} \quad[\because$ common angle $]$
$\therefore \Delta \mathrm{XYZ} \sim \Delta \mathrm{XQP}[\because$ by AAA Criterion]
$\therefore \frac{\mathrm{XQ}}{\mathrm{XY}}=\frac{\mathrm{xP}}{\mathrm{XZ}}$
$\Rightarrow \mathrm{XQ}=\frac{\mathrm{XPXXY}}{\mathrm{XZ}}$

$\Rightarrow \mathrm{XQ}=\frac{4 \times 16}{24}$
$\Rightarrow \mathrm{XQ}=2.6 \mathrm{~cm}$
3. A girl of height 90 cm is walking away from the bas of a lamppostat a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds. speed of the girl $=120 \mathrm{~cm} / \mathrm{s}$
4 s గెళల్లి నేడెదద దోరర $=120 \mathrm{x} 4=480 \mathrm{~cm}$
Height of lamp $=\mathrm{AB}=360 \mathrm{~cm}$
Height of girl $=\mathrm{DE}=90 \mathrm{~cm}$
Distance walked by the girl $=\mathrm{BE}=480 \mathrm{~cm}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEC}$,
$\angle \mathrm{ABC}=\angle \mathrm{DEC}=90^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{C}[\because$ common angle $]$

$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{DEC}$ [\because by AAA Criterion]
$\therefore \frac{\mathrm{EC}}{\mathrm{BC}}=\frac{\mathrm{DE}}{\mathrm{AB}}$
$\therefore \frac{\mathrm{EC}}{\mathrm{BE}+\mathrm{EC}}=\frac{\mathrm{DE}}{\mathrm{AB}}$
$\therefore \mathrm{EC}=\frac{\mathrm{DE}[\mathrm{BE}+\mathrm{EC}]}{\mathrm{AB}}$
$\therefore \mathrm{EC}=\frac{90[480+\mathrm{EC}]}{360}$
$\therefore \mathrm{EC}=\frac{[480+\mathrm{EC}]}{4}$
$\therefore 4 E C=480+E C$
$\therefore 3 E C=480$
$\therefore \mathrm{EC}=160 \mathrm{~cm}$
\therefore length of shadow $=\mathrm{EC}=1.6 \mathrm{~m}$

Rriders based on AA similarity criterion

1. $\triangle \mathrm{BAC}$ and $\triangle \mathrm{BDC}$ are two right angled triangles with common hypotenuse BC. The sides AC and BD intersect at P.Prove that AP.PC = DP.PB .
Soln : In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DCP}$,
$\angle A=\angle D=90^{\circ}$
$\angle \mathrm{APB}=\angle \mathrm{DPC}[\because$ vertically opp angles]
$\therefore \triangle \mathrm{ABP} \sim \triangle \mathrm{DCP}$
$\therefore \frac{\mathrm{AP}}{\mathrm{DP}}=\frac{\mathrm{PB}}{\mathrm{PC}}$ [corresponding sides of similar triangles are proportional]

$$
\Rightarrow \text { AP.PC = DP.PB }
$$

2. In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{TUS}, \angle \mathrm{QPR}=\angle \mathrm{UTS}=90^{\circ}$ and $\mathrm{PR} \| \mathrm{TS}$. Prove that $\triangle \mathrm{PQR} \sim \triangle$ TUS.
Soln : In $\triangle Q P R$ and $\Delta T U S$
$\angle P=\angle \mathrm{T}=90^{\circ}$
$\angle R=\angle \mathrm{S}$ [\because alternate angles]
$\Delta \mathrm{PQR} \sim \Delta$ TUS [\because by AAA Criterion]

3. If the diagonals of a quadrilateral divide each other proportionally, then Prove that the quadrilateral $A B C D$ is a trapezium,
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}[\because$ data $]$
$\Rightarrow \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$
$\therefore \angle O A B=\angle O C D$
But they are alternate angles

$\therefore \mathrm{AB} \| \mathrm{CD}$
\therefore Hence, the quabrilateral ABCD trapezium
4. The diagonal BD of a parallelogram ABCD intersect AE at ' F '. E is any point on $B C$.
Prove that $\mathrm{DF} \times \mathrm{EF}=\mathrm{FB} \times \mathrm{FA}$.
Soln ; In $\triangle A F D$ and $\triangle B F E$
$\angle \mathrm{AFD}=\angle \mathrm{BFE} \quad[\because$ vertically opp angles]
$\angle \mathrm{ADF}=\angle \mathrm{EBF} \quad[\because$ alternate angles $]$
$\triangle \mathrm{AFD} \sim \Delta \mathrm{BFE}[\because$ by AAA Criterion $]$

$$
\begin{aligned}
& \therefore \frac{\mathrm{DF}}{\mathrm{FB}}=\frac{\mathrm{FA}}{\mathrm{EF}} \\
& \Rightarrow \mathrm{DF} \cdot \mathrm{EF}=\mathrm{FB} \cdot \mathrm{FA}
\end{aligned}
$$

5. In the adjoining figure, $\angle \mathrm{ABC}=90^{\circ}$ and $\angle \mathrm{AMP}=90^{\circ}$. Prove that (i). $\triangle \mathrm{ABC} \sim \triangle A M P$
(ii). $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Soln: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PMA}$,
$\angle A B C=\angle A M P=90^{\circ}[\because$ data $]$
$\angle \mathrm{BAC}=\angle \mathrm{MAP}[\because$ common angle]

(i). $\triangle \mathrm{ABC} \sim \triangle$ AMP [\because AAA similarity criteria] $]$
(ii). $\frac{C A}{P A}=\frac{B C}{M P}$
6. In the trapezium $\mathrm{ABCD}, \mathrm{AB}\|\mathrm{DC}, \mathrm{EF}\| \mathrm{AB}, \mathrm{DC}=2 \mathrm{AB}$ దుత్తు $\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{3}{4}$,

Prove that $7 \mathrm{EF}=10 \mathrm{AB}$.
soln: In $\triangle A B D, F G \| A B$,
$\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{3}{4} \Rightarrow \frac{\mathrm{EC}}{\mathrm{BE}}=\frac{4}{3} \Rightarrow \frac{\mathrm{BC}-\mathrm{BE}}{\mathrm{BE}}=\frac{4}{3}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{BE}}-\frac{\mathrm{BE}}{\mathrm{BE}}=\frac{4}{3} \Rightarrow \frac{\mathrm{BC}}{\mathrm{BE}}-1=\frac{4}{3}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{BE}}=\frac{4}{3}+1=\frac{7}{3}$
$\Rightarrow \frac{\mathrm{BE}}{\mathrm{BC}}=\frac{3}{7}$
$\therefore \frac{\mathrm{FG}}{\mathrm{AB}}=\frac{\mathrm{GD}}{\mathrm{BD}}$
$\Rightarrow \frac{\mathrm{FG}}{\mathrm{AB}}=\frac{\mathrm{BD}-\mathrm{BG}}{\mathrm{BD}} \Rightarrow \frac{\mathrm{BD}}{\mathrm{BD}}-\frac{\mathrm{BG}}{\mathrm{BD}}$
$\Rightarrow \frac{\mathrm{FG}}{\mathrm{AB}}=1-\frac{\mathrm{BG}}{\mathrm{BD}}$

In $\triangle \mathrm{BDC}, \mathrm{GE} \| \mathrm{DC}$,

$$
\begin{align*}
& \therefore \frac{\mathrm{GE}}{\mathrm{DC}}=\frac{\mathrm{BG}}{\mathrm{BD}}=\frac{\mathrm{BE}}{\mathrm{BC}} \cdots-\cdots(3) \tag{3}\\
& (1) \Rightarrow \frac{\mathrm{FG}}{\mathrm{AB}}=1-\frac{\mathrm{BG}}{\mathrm{BD}} \Rightarrow 1-\frac{\mathrm{BE}}{\mathrm{BC}} \Rightarrow 1-\frac{3}{7} \quad\left[\because \frac{\mathrm{BE}}{\mathrm{BC}}=\frac{3}{7}\right] \\
& \Rightarrow \frac{\mathrm{FG}}{\mathrm{AB}}=\frac{4}{7} \\
& \Rightarrow 7 \mathrm{FG}=4 \mathrm{AB}-\cdots \cdots(1) \\
& \text { And } \therefore \frac{\mathrm{GE}}{\mathrm{DC}}=\frac{\mathrm{BE}}{\mathrm{BC}}[\because \text { from (3)] }
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{GE}}{2 \mathrm{AB}}=\frac{\mathbf{3}}{\mathbf{7}} \quad[\because(1) \text { and } \mathrm{DC}=2 \mathrm{AB}] \\
& \Rightarrow \mathbf{7 G E}=\mathbf{6 A B}----(\mathbf{5}) \\
& (4)+(5) \\
& 7 \mathrm{FG}+7 \mathrm{GE}=4 \mathrm{AB}+6 \mathrm{AB} \\
& =7(\mathrm{FG}+\mathrm{GE})=10 \mathrm{AB} \\
& =\mathbf{7 E F}=\mathbf{1 0 A B}[\because \mathrm{FG}+\mathrm{GE}=\mathrm{EF}]
\end{aligned}
$$

Exercise 11.4

1. In which of the following cases the pairs of triangles are similar? Write the similarity criterion used by you for answering the questions and also write the pair of similar triangles in the symbolic form.
Fig-1
$\angle A=\angle D$
$\angle \mathrm{C}=\angle F$
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}[\because \mathrm{AAA}$ similar criteria]

Fig - 2
$\frac{A B}{D E}=\frac{6.9}{2.3}=3 ; \frac{A C}{D F}=\frac{12}{4}=3 ; \frac{B C}{E F}=\frac{15}{5}=3$
$\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}=3$
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta$ DEF [$\because \mathrm{B} . \mathrm{P} . \mathrm{T}]$

Fig- 3

$$
\begin{aligned}
& \frac{\mathrm{OW}}{\mathrm{OY}}=\frac{7}{4} \quad \text { and } \quad \frac{\mathrm{OX}}{\mathrm{OY}}=\frac{7}{4} \\
& \therefore \quad \Delta \mathrm{WOX} \sim \Delta \mathrm{ZOY}[\because B . P . T .]
\end{aligned}
$$

Fig - 4
$\frac{\mathrm{HJ}}{\mathrm{DE}}=\frac{5}{2.5}=2 ; \frac{\mathrm{GJ}}{\mathrm{DF}}=\frac{6}{3}=2 ; \frac{\mathrm{GH}}{\mathrm{EF}}=\frac{4}{2}=2$
$\therefore \frac{\mathrm{HJ}}{\mathrm{DE}}=\frac{\mathrm{GJ}}{\mathrm{DF}}=\frac{\mathrm{GH}}{\mathrm{EF}}=2$

$\therefore \quad \Delta \mathrm{GHJ} \sim \Delta$ DEF [\because B.P.T.]

Fig - 5

$\frac{\mathrm{HT}}{\mathrm{AT}}=\frac{12.5}{5}=2.5 ; \quad \frac{\mathrm{HM}}{\mathrm{AL}}=\frac{7.5}{3}=2.5 ;$
$\frac{\mathrm{MT}}{\mathrm{LT}}=\frac{10}{4}=2.5$
$\therefore \frac{\mathrm{HT}}{\mathrm{AT}}=\frac{\mathrm{HM}}{\mathrm{AL}}=\frac{\mathrm{MT}}{\mathrm{LT}}=2.5$

$\therefore \Delta \mathrm{HMT} \sim \Delta$ ALT ['.B.P.T.]

Fig - 6

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{UTV}$, the sides corresponding to the equal angle $\left(80^{\circ}\right)$ are Not proportional. So, they are not similar.

Exercise 11.5

1. In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \mathrm{BD} \perp \mathrm{AC}$
(a) $\mathrm{BD}=8 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}$, Find $C D$
$\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{CD}$
$8^{2}=4 \times C D$
$64=4 C D$
$\therefore \mathrm{CD}=16 \mathrm{~cm}$

(b) $\mathrm{AB}=5.7 \mathrm{~cm}, \mathrm{BD}=3.8 \mathrm{~cm}, \mathrm{CD}=5.4 \mathrm{~cm}$ find BC .
$\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{CD}$
$\therefore 3.8^{2}=\mathrm{AD} \mathrm{x} 5.4$
$\mathrm{AD}=\frac{14.44}{5.4}=2.67 \mathrm{~cm}$
$\therefore \mathrm{AC}=\mathrm{AD}+\mathrm{CD}=2.67+5.4=8.07 \mathrm{~cm}^{5.7 \mathrm{~cm}}$
$\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}$

$\mathrm{BC}^{2}=8.07 \times 5.4=43.6$
$B C=6.6 \mathrm{~cm}$
(c). $\mathrm{AB}=75 \mathrm{~cm}, \mathrm{BC}=1 \mathrm{~m}, \mathrm{AC}=1.25 \mathrm{~m}$, find BD .
$\mathrm{AB}^{2}=\mathrm{AC} \times \mathrm{AD}$
$75^{2}=125 \times \mathrm{AD}$
$\mathrm{AD}=\frac{5625}{125}=45 \mathrm{~cm}$
$\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{CD}$
$\mathrm{BD}^{2}=45 \times 80=3600$

$\mathrm{BD}=60 \mathrm{~cm}$
2) In $\triangle \mathrm{ABC}, \angle \mathrm{BAC}=90^{\circ}, \mathrm{AD} \perp \mathrm{BC}, \mathrm{BD}=4 \mathrm{~cm}, \mathrm{DC}=5 \mathrm{~cm}$

Find x and y.
$\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$
$\mathrm{y}^{2}=4 \mathrm{x} 5=20$
$\mathrm{y}=\sqrt{20}$
$\mathrm{y}=2 \sqrt{5} \mathrm{~cm}$ or 4.47 cm
$\mathrm{AB}^{2}=\mathrm{BC} \times \mathrm{BD}$
$x^{2}=9 \mathrm{x} 4=36$
$\mathrm{x}=6 \mathrm{~cm}$
3. In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}, \mathrm{QS} \perp \mathrm{PR}, \mathrm{PQ}=\mathrm{a}, \mathrm{QR}=\mathrm{b}, \mathrm{RP}=\mathrm{c}$
and $\mathrm{QS}=\mathrm{p}$, show that $\mathrm{pc}=\mathrm{ab}$
Soln : $\mathrm{QR}^{2}=\mathrm{RP} \times \mathrm{SR} \Rightarrow \mathrm{b}^{2}=\mathrm{c} \times \mathrm{SR}$
$\mathrm{SR}=\frac{\mathrm{b}^{2}}{\mathrm{c}}$
$\mathrm{PQ}^{2}=\mathrm{RP} \times \mathrm{SP} \Rightarrow \mathrm{a}^{2}=\mathrm{c} \times \mathrm{SP}$
$\mathrm{SP}=\frac{\mathrm{a}^{2}}{\mathrm{c}}$
$\mathrm{SQ}^{2}=\mathrm{SR} \times \mathrm{SP}$

$\mathrm{p}^{2}=\frac{\mathrm{b}^{2}}{\mathrm{c}} \mathrm{x} \frac{\mathrm{a}^{2}}{\mathrm{c}}=\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{c}^{2}}$
$\Rightarrow \mathrm{p}^{2} \mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~b}^{2}$
$\Rightarrow \mathrm{pc}=\mathrm{ab}$
4) $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=90^{\circ}, \mathrm{QD} \perp \mathrm{PR}$,

If $P D=4 D R$, prove that
$P Q=2 Q R$.
$\mathrm{PR}=\mathrm{PD}+\mathrm{DR} \Rightarrow \mathrm{PR}=4 \mathrm{DR}+\mathrm{DR}$
$P R=5 D R$

$\mathrm{QR}^{2}=\mathrm{PR} \times \mathrm{DR} \Rightarrow \mathrm{QR}^{2}=5 \mathrm{DR} \times \mathrm{DR}[\because$ from (1) $]$
$\mathrm{QR}^{2}=5 \mathrm{DR}^{2} \Rightarrow \mathrm{QR}=\sqrt{5} \mathrm{DR}---\cdots--(2)$
$\mathrm{PQ}^{2}=\mathrm{PR} \times \mathrm{PD} \Rightarrow \mathrm{PQ}^{2}=5 \mathrm{DR} \times 4 \mathrm{DR} \Rightarrow \mathrm{PQ}^{2}=20 \mathrm{DR}^{2}$
$\Rightarrow \mathrm{PQ}=2 \sqrt{5} \mathrm{DR}$
$\Rightarrow \mathrm{PQ}=2 \mathrm{QR}[\because$ from (2) $]$
5) $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \mathrm{BM} \perp \mathrm{AC}$,
(a) $B M=x+2, A M=x+7, C M=x$, find x $\mathrm{BM}^{2}=\mathrm{AM} . \mathrm{CM}$
$(\mathrm{x}+2)^{2}=(\mathrm{x}+7) \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}+4=\mathrm{x}^{2}+7 \mathrm{x}$
$\Rightarrow 4 \mathrm{x}+4=7 \mathrm{x}$

$\Rightarrow 3 \mathrm{x}=4$
$\Rightarrow \mathrm{x}=\frac{4}{3}$
(b). $A M=8 x^{2}, M C=2 x^{2}$ then, find $B M$ and $A B$.
$\mathrm{BM}^{2}=\mathrm{AM} . \mathrm{MC}$
$\mathrm{BM}^{2}=8 \mathrm{x}^{2} .2 \mathrm{x}^{2} \Rightarrow \mathrm{BM}^{2}=16 \mathrm{x}^{4}$
$\Rightarrow \mathrm{BM}=\sqrt{16 \mathrm{x}^{4}}$
$\Rightarrow \mathrm{BM}=4 \mathrm{x}^{2}$
$\mathrm{AB}^{2}=\mathrm{AC} . \mathrm{AM}$
$\Rightarrow \mathrm{AB}^{2}=10 \mathrm{x}^{2} .8 \mathrm{x}^{2}, \Rightarrow \mathrm{AB}^{2}=80 \mathrm{x}^{4}$
$\Rightarrow A B=\sqrt{80 x^{4}}$

$\Rightarrow A B=4 x^{2} \sqrt{5}$

Exercise 11.5

1. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$ are on the same base BC . Prove that
$\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D B C}=\frac{A O}{D O}$
Soln : Draw $A M \perp B C$ and $D N \perp B C$.
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DBC}}=\frac{\frac{1}{2} \mathrm{xBCxAM}}{\frac{1}{2} \times B C \times D N}=\frac{\mathrm{AM}}{\mathrm{DN}}$
In $\triangle \mathrm{AOM}$ and $\triangle \mathrm{DON}$
$\angle \mathrm{AMO}=\angle \mathrm{DNO}=90^{\circ}[\because$ construction $]$

$\angle A O M=\angle$ DON [\because vertically opp angles]
$\therefore \triangle \mathrm{AOM} \sim \triangle \mathrm{DON}$
$\therefore \frac{\mathrm{AM}}{\mathrm{DN}}=\frac{\mathrm{AO}}{\mathrm{DO}}=\frac{\mathrm{OM}}{\mathrm{ON}}$
$\therefore \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D B C}=\frac{A O}{D O}$
2. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two equilateral triangles and $\mathrm{BD}=\mathrm{DC}$, find the ratio between areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$. ${ }^{A}$
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{BDE}}=\frac{\mathrm{BC}^{2}}{\mathrm{BD}^{2}}$
$\Rightarrow \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{BDE}}=\frac{(2 \mathrm{BD})^{2}}{\mathrm{BD}^{2}}$
$\Rightarrow \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{BDE}}=\frac{4 \mathrm{BD}^{2}}{\mathrm{BD}^{2}}$
$\Rightarrow \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{BDE}}=\frac{4}{1}$
\Rightarrow Area of $\triangle \mathrm{ABC}$: Area of $\triangle \mathrm{BDE}=4: 1$

3. Two isosceles triangles are having equal vertical angles and their areas are in the ratio $9: 16$. Find the ratio of their corresponding altitudes.
Soln ; In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{DEN}$,
$\angle A M B=\angle D N E=90^{\circ}[\because A M \perp B C, D N \perp E F]$
$\angle \mathrm{ABM}=\angle \mathrm{DEN}=45^{\circ}\left[\because\right.$ in isosceles triangle remaining two angles are equal to $\left.45^{\circ}\right]$
$\therefore \triangle \mathrm{ABM} \sim \triangle \mathrm{DEN}$
$\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BM}}{\mathrm{EN}}=\frac{\mathrm{AM}}{\mathrm{DN}}$
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{\mathrm{AM}^{2}}{\mathrm{DN}^{2}}=\frac{3^{2}}{4^{2}}$
$\Rightarrow \mathrm{AM}: \mathrm{DN}=3: 4$

4. The corresponding altitudes of two similar triangles are 3 cm and 5 cm , respectively. Find the ratio between their areas .
$\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{\mathrm{AM}^{2}}{\mathrm{DN}^{2}}$
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{3^{2}}{5^{2}}$
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{9}{25}$

5. In the Trapezium $A B C D, A B \| C D, A B=2 C D$ and area of $\triangle A O B=84 \mathrm{~cm}^{2}$ find the area of $\triangle C O D$.
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle A O B=\angle C O D[\because$ vertically opposite angles]
$\angle O A B=\angle O C D[\because A B \| C D$ alternate angles]
$\therefore \quad \triangle \mathrm{AOB} \sim \Delta \mathrm{COD}[\because \mathrm{AAA}$ Similarity.]
$\therefore \frac{\text { Area of } \triangle \mathrm{AOB}}{\text { Area of } \triangle \mathrm{COD}}=\frac{\mathrm{AB}^{2}}{\mathrm{CD}^{2}}$
$\therefore \frac{84}{\text { Area of } \triangle C O D}=\frac{(2 C D)^{2}}{C D^{2}}$
$\therefore \frac{84}{\text { Area of } \triangle C O D}=\frac{4 \mathrm{CD}^{2}}{\mathrm{CD}^{2}}$
$\therefore \frac{84}{\text { Area of } \triangle C O D}=\frac{4}{1}$

\therefore Area of $\triangle C O D=\frac{84}{4}$
\therefore Area of $\triangle C O D=21 \mathrm{~cm}^{2}$
6. In the above figure, find the ratios between areas o $\mathrm{f} \triangle \mathrm{AOB}$ and $\triangle C O D$, if $\mathrm{AB}=3 \mathrm{CD}$.
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$
$\angle A O B=\angle C O D[\because$ vertically opposite angles]
$\angle O A B=\angle O C D[\because \mathrm{AB} \| \mathrm{CD}$ alternate angles]
$\therefore \triangle \mathrm{AOB} \sim \triangle \mathrm{COD}[\because \mathrm{AAA}$ Similarity.]
$\therefore \frac{\text { Area of } \triangle A O B}{\text { Area of } \triangle C O D}=\frac{\mathrm{AB}^{2}}{\mathrm{CD}^{2}}$
$\therefore \frac{\text { Area of } \triangle \mathrm{AOB}}{\text { Area of } \triangle C O D}=\frac{(3 \mathrm{CD})^{2}}{\mathrm{CD}^{2}}$
$\therefore \frac{\text { Area of } \triangle \mathrm{AOB}}{\text { Area of } \triangle \mathrm{COD}}=\frac{9 \mathrm{CD}^{2}}{\mathrm{CD}^{2}}$
$\frac{\text { Area of } \triangle \mathrm{AOB}}{\text { Area of } \triangle \mathrm{COD}}=\frac{9}{1}$

\therefore Area of \triangle COD: Area of $\triangle C O D=9: 1$
